|         |         | 
The first Euler-Maclaurin integration formula is
| ![$\int^1_0 f(x)\,dx = {\textstyle{1\over 2}}[f(1)+f(0)]$](e_2216.gif)  | |
| ![$ - \sum_{p=1}^q {1\over (2p)!} B_{2p}[f^{(2p-1)}(1)-f^{(2p-1)}(0)]$](e_2217.gif)  | |
|   | (1) | 
 are Bernoulli Numbers.  Sums may be converted to 
Integrals by inverting the Formula to obtain
 are Bernoulli Numbers.  Sums may be converted to 
Integrals by inverting the Formula to obtain
| ![\begin{displaymath}
\sum_{m=1}^n f(m) = \int^n_1 f(x)\,dx+{\textstyle{1\over 2}}[f(1)+f(n)]+{B_2\over 2!}[f'(n)-f'(1)]+\ldots.
\end{displaymath}](e_2220.gif) | (2) | 
 is tabulated at
 is tabulated at  values
 values  ,
,  , ...,
, ...,  ,
,
| ![$\int_{x_1}^{x_n} f(x)\,dx =h[{\textstyle{1\over 2}}f_1+f_2+f_3+\ldots+f_{n-1}+{\textstyle{1\over 2}}f_n]$](e_2224.gif)  | |
| ![$\mathop{-}\sum_{k=1}^\infty {B_{2k}h^{2k}\over (2k)!} [{f_n}^{(2k-1)}-{f_1}^{(2k-1)}].\quad$](e_2225.gif)  | (3) | 
The Euler-Maclaurin formula is implemented in Mathematica
 (Wolfram Research, Champaign, IL) as the function
NSum with option Method->Integrate.
 (Wolfram Research, Champaign, IL) as the function
NSum with option Method->Integrate.
The second Euler-Maclaurin integration formula is used when  is tabulated at
 is tabulated at  values
 values  ,
,  , ...,
, ...,
 :
:
| ![$\int_{x_1}^{x_n} f(x)\,dx = h[f_{3/2}+f_{5/2}+f_{7/2}+\ldots+f_{n-3/2}+f_{n-1/2}]$](e_2229.gif)  | |
| ![$ -\sum_{k=1}^\infty {B_{2k}h^{2k}\over (2k)!}(1-2^{-2k+1})[{f_n}^{(2k-1)}-{f_1}^{(2k-1)}].$](e_2230.gif)  | 
See also Sum, Wynn's Epsilon Method
References
Abramowitz, M. and Stegun, C. A. (Eds.).
  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
  New York: Dover, pp. 16 and 806, 1972.
 
Arfken, G.  ``Bernoulli Numbers, Euler-Maclaurin Formula.''  §5.9 in 
  Mathematical Methods for Physicists, 3rd ed.  Orlando, FL: Academic Press, pp. 327-338,
  1985.
 
Borwein, J. M.; Borwein, P. B.; and Dilcher, K.  ``Pi, Euler Numbers, and Asymptotic Expansions.''
  Amer. Math. Monthly 96, 681-687, 1989.
 
Vardi, I.  ``The Euler-Maclaurin Formula.''  §8.3 in Computational Recreations in Mathematica.
  Reading, MA: Addison-Wesley, pp. 159-163, 1991.